

Academic Scholarship 2012

Preliminary Examination

MATHEMATICS

Time Allowed: $11 / 2$ hours

- Calculators may NOT be used.
- Write your answers on lined paper and show as much working as possible. Answers without clear logical working will gain little credit.
- Do not spend too long on any single question. If you are having difficulty with a particular question, move on and return to it at the end if you have time. Do not be concerned if you cannot answer all of the questions.
- At the end of the examination, hand in both the question paper and your answers with your name clearly indicated on all sheets.

1. Work out
(a) 40% of 350 .
(b) 240×25
(c) 5^{3}
(d) $\sqrt{64}$
(e) $3 \frac{1}{2} \times 1 \frac{1}{3}$
(f) $\frac{\frac{3}{5}-\frac{1}{4}}{\frac{7}{8} \div \frac{1}{4}}$
(g) $\frac{2}{3} \times 12+3 \div 0.2$
2. (a) Remove brackets :

$$
2(3-4 x)
$$

(b) Factorise fully :

$$
6 x y^{2}-12 x^{2} y
$$

(c) Multiply out the brackets and simplify :

$$
(x+3)(x+2)
$$

(d) If $a=2, b=-3$ and $c=\frac{1}{4}$, work out the value of:
(i) $a^{2}-b^{2}$
(ii) $\frac{a}{c}-b$
(iii) $-\frac{2}{3} a b c$
3. Solve for x :
(a) $5 x-3=9-x$
(b) $\frac{2}{3}(2 x-3)=8$
4. \quad Solve for x and $y: \quad 2 x-3 y=13$

$$
3 x+2 y=0
$$

5. A rectangle has adjacent sides of length $(2 x+3) \mathrm{cm}$ and $(5 x-1) \mathrm{cm}$. The perimeter is 102 cm . Find the value of x.
6. The best sprinters in the world run the 100 metres in about 10 seconds.
(a) Work out their average speed during the race in kilometres per hour (km/h).
(b) Using a simple conversion (of kilometres to miles), work out their approximate average speed in miles per hour (mph).
7. A class of 8 pupils sat an Algebra test. Their average mark was 65%. Jenny was absent for the test, but sat it the following day. When her mark was included, the class average was 60%. What was her mark for the test ?
8.

Diagram not accurately drawn.

The diagram shows three squares of the same size. What is the size (in degrees) of the angle marked x ?
9. James is a property developer. He bought two homes and sold them both a year later. He sold each of them for $£ 990000$. On the first home, he made a profit of 10%, but on the second home he made a loss of 10%. Overall, what percentage profit or loss has he made on the two houses, or was his profit/loss exactly zero?
10. When a barrel is 30% empty, it contains 30 litres more than when it is 30% full. How many litres does the barrel hold when it is full?
11. (a) Three different Mathematics books are to be placed side by side on a shelf, as shown below :

Let's call the books A, B and C. Using these letters, write down all the different ways in which the books can be placed.
(b) I now add a fourth Mathematics book (call it D) to the collection. Work out the number of different ways in which the four books can be arranged on the shelf.
(note : you will not get full marks by just writing out all the different ways and counting them - try to think of a clever method of calculating the answer, and remember to show your working so that your method is clear).
(c) Six different Mathematics books are to be placed on a shelf, as shown below.

(i) In how many different ways can this be done ?
(ii) I now decide that two particular books must occupy the two 'end' positions (marked with a * below). (note : it does not matter which goes on which end).

In how many different ways can I now arrange the books?
12. At a holiday camp, the ratio of boys to girls is $3: 4$. The ratio of girls to adults is $5: 7$. What is the ratio of children to adults at the camp ?
13.

In the diagram, triangle $X Y Z$ is isosceles, with $X Y=X Z$.
Three angles have been labelled as r, p and q.
Find the size of r in terms of p and q.
14. Find the value of $\frac{1}{x+2}$ if $\frac{1}{x}=3.5$
15. In Mathematics, n ! is called n factorial and this is how it works :

$$
n!=1 \times 2 \times 3 \times 4 \times \ldots \ldots . . \times n
$$

So, for example :
$3!=1 \times 2 \times 3$ and $7!=1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7$
Amazingly, the exact number of seconds in 6 weeks is equal to $b!$ (b is a whole number).

Work out the value of b.

E N D

